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Abstract

The on-orbit GPS satellite clock signals demonstrate sfgraint periodic fluctuations for periods of
2.003 and 4.006 cyclgday. A timescale algorithm which includes the on—orbit GP#®cks should
account for these periodic variations in order to mitigatedir influence on the timescale. This is
accomplished in a Kalman filter by introducing the periodies independent states which evolve in a
discrete—time algorithm alongside four other clock dynasrstates. However, there is some freedom in
the choice of how these harmonic states are coupled to theeottates depending on the application
at hand. A typical model of a clock’s dynamics is a four stateck model, including the phase of the
clock, its first derivative (frequency) and its second dextive (drift), each perturbed by an indepen-
dent random walk; one additional phase state is also incldde order to model a pure white phase
noise. Four additional states are joined with the typicalock states in order to accommodate the
periodic processes, where each of the four harmonic statesaso perturbed by stochastic noises of
some type (e.g., random walks) in order to account for any damn change in the harmonic amplitude
or phase over time.

In general, a Kalman filter will grow in complexity with the nmber of states and the number of non—
trivial correlations between them. Since the process naiseariance matrix will have ff—diagonal
entries for the discrete model, including those between thgical clock dynamic states and the har-
monic states, reducing unnecessary correlations can leade¢duced complexity and improved pro-
cessing time for the filter implementation. If the processine covariance between the harmonic
states and the clock dynamic states are small, then a filtegaalthm that neglects these small cross—
correlations (and hence simplifies the state covariance matis preferable and can be exploited to
reduce processing time.

This work investigates the performance of the fully coupletbdel in comparison with the reduced co-
variance model, where performance is measured in terms ahiiimescale stability, model accuracy,
and processing time. The benefits and costs of coupling thenmanics only to the phase state versus
coupling them fully to the drift and frequency states is alsuovestigated.

INTRODUCTION

Good filter performance for a timescale is reliant on an ateumodel of the clocks’ behaviors. As GPS

clocks have continued to improve with each new generatimhas our ability to measure (or estimate) their

signals remotely using techniques such as geodetic timefa@a Increased global density of GPS tracking

stations, the utilization of geodetic quality receiverattban track multiple satellites on both frequencies, as
well as utilization of integrated Doppler observations ééed to the routine comparison of remote clocks

at the centimeter level globally as evidenced, for exanipléhe products of the International GNSS Ser-

vice. Throughout this work, the term “clock” is meant to emgass all non—dispersive bias—likéeets on a
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given clock signal. In the case of satellite clocks, this nsaaot only the contribution from the active atomic
physics package on board the satellite but also any othgrlika dfects from other elements in the transmit
chain leading up to transmission of the signal at the antelroiaground station clocks, this includes not only
the frequency reference used by the GPS receiver but algtihall bias—like fects in the GPS receive chain.

Using data from the IGS the authors|[it] determined that the GPS constellation clocks are subjesigto
nificant harmonic variations at periodsmok (2.0029+ 0.0005) cycles per day far € {1, 2, 3, 4} with lesser
amplitudes fom = 3 andn = 4, specifically. Any timescale which utilizes the GPS sateltlocks should
therefore compensate the harmonic variations, partigular n = 1 andn = 2. This paper compares sev-
eral similar approaches to handling these two periodickercontext of Kalman filtering, each with subtle
model diferences as well asftierent impacts on the speed of computation.

In order to closely model the expected configuration of thes@Pperational control segment network of
clocks, we assume in this analysis a collection of 41 clod&sground high performance commercial ce-
sium clocks, 24 GPS constellation clocks with performanoalar to the Block IIF performances and 2
commercial active masers. The goal is to generate a timefoah these 41 clocks utilizing threefidirent
approaches to modeling the harmonic variations. In eacheofttree approaches the same timescale con-
straints will be added to the system so that only the pagrduandling of the harmonic variationgf@irs in

the comparisons.

The first section of this paper will introduce the base cloadsl that is employed for all of the clocks in
this analysis. A four state model is chosen in order to agdrasdditional white noise process in the clock’s
phase. The clock dynamics are introduced in a continuowsoreof the model. The discrete model is ob-
tained by standard techniques that can be fourj@]inThe variance of the stochastic white noise sequences
is defined as an input parameter, and derivations of key i@ matrices are also presented. The base
clock model is all that is required to analyze the cesiumkdand masers since no other known factors are
significantly important.

Additional states necessary to model the harmonic vanatior the GPS clocks are presented in the second
section. Within this section are threefdrent models of the clock periodic states: the first addsttites

to only the phase state without any stochastic correlatewéen the stochastics driving the harmonics and
the stochastics driving the base model; a second providdslfcorrelation between the harmonic stochas-
tics and the base model stochastics but results in higheritlon complexity; and a third model couples
the harmonics to all clock states and stochastically cateslthem entirely. The structure of the matrices
involved in the algorithm are derived for each model in tieist®n. A large diagram is also shown to exhibit
how each noise traverses the clock’s states and thereby ddwagects the clock signal output.

The modeling constraints used to generate the ensemblessmied in the third section. Also, the standard
Kalman filter process that is used to filter measurementfitoehsemble is shown for completeness. Details
of the filter and the matrices that are used in this case aieeder There is also an explanation of the
filter components which contribute most to the computatioretof the algorithm. A key element of this
study is to identify the algorithm speed that is sacrificedemwigreater noise correlations are made. The
fourth section closes the analysis with results of each e$déhmodels applied to the filter. A study of the
complexity bestowed upon the filter by each model is presente comparison of the clock deviations,
timescale deviations and filter run times allow us to deteemwhich model may best support a timescale
filter for the ensemble involving on—board GPS clocks.
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NotaTIONAL CONVENTIONS

Bracketed superscriptiygubscripting will always denote quantities pertainingiividual clock members.
For examplexg] denotes the phase of clockelative to a perfect clock. When the continuous—time model
is discussed, we will use the varialiléo denote the independent “perfect time” measurement. Tdte m
jority of this report, however, revolves around a discretedad. We will denote byt the discrete epoch
of the timescale from a clock common to all the measuremerntsatimates. Variations in thefiirence

T .= tx — tx_1 are neglected as insignificant. In cases where the quarititiyevest is dependent on onty

the epoch variabl& will be dropped to simplify notation.

Subscripts exhibited on bold matrix variables (asAiqn) are used to denote the size of the matrix. For
example,A4 3y would indicate that matrid has size 4< 3N. If only one index is listed in the subscript,
then the matrix is square. When subscripts appear on mairigbles of normal italic type (as iAnn),
then the expressioAm, represents the entry in positiom,(n) of matrix A. The matrice®n,, and0, are the
zero matrices of sizasxnandnxn, respectively. We denote the siag nidentity matrix by the symbdiy,.

BASE CLOCK MODEL

Two-—state perfect integrators were first suggested to nthdetrror of clocks by Jones and Tryon during
the early 1980§3]. Phase and frequency were the states used in the two—stdes. rBy 1982, the inclusion
of a linear clock drift term brought about three state cloakdels, necessary particularly to model the drift
of masers and rubidium clockd]. The four state model has since been used to model the belodvimst
clocks. Seg5], for example. An additional phase state with its own whitese@rocess is the fourth state
that sets this model apart from the two and three state vexsla this paper, cesium clocks and masers will
be modeled using the four state clock model. The primarydpbowever, is the set of GPS constellation
clocks. These will require additional states to handlertperiodic variations. Extensions of the model for
the GPS clocks will be discussed in the next section; thissebandles only the four state clock model.

CoNTINUOUS VERSION

The four states of this model are the clock’s phase, devivaif phase (frequency), second derivative of
phase (drift), and an additional phase state. Independtagrated white noise components (random walks)
are added to each of the deterministic states of drift, fsaqy and phase. The additional phase state is equal
to the clock’s phase plus an additional non—integratedentiuise. A state vectorand corresponding noise
input vectoru contain the variables of the states and input noises forltek.cThese are shown below to
identify the nomenclature for the states and noise comgenen

x1(t)] Perturbed Phase White Phase Noise[u; (t)

X(t) = Xo(t)| Phase Random Walk Phase Noiséu(t) ~ ()
x3(t)| Frequency Random Walk Frequency Nois¢us(t)
X4(t)| Drift Random Walk Drift Noise [ ug(t)

A diagram of the dynamics for these four clock states and dineesponding input white noise sequences is
shown below in Figure 1. In this figure, one can see how theesaise integrated to become random walks
or random runs upon contribution to the output clock signal.
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Figure 1. Model of a clock’s four states and independenttimgute noises.

This model is analogous to an acceleration model where, drdfjuency and phase are the analogs of
acceleration, velocity and displacement. With this sintifadrawn, the systems of flierential equations
modeling the clock depicted in Figure 1 is clearly

dx
CE = Fx(t) +u(t) 1)

wheret is an independent “perfect time” variable and thefioent matrices are

000 1 -100
010 00 1
C=1lo 0 1 and  F=1g o o 4
000 0 0 0

Each of the noise inputs are white noise sequences which lvassiime to have mean zero and variances
defined byE [ u(t)u" (') | = Séo(t - ) whereS = Diag[S1, S, S3, S4] ands(x) is the standard Dirac
delta function.

DISCRETE VERSION

An equivalent discrete model can be developed by first ge#tidistribution of evenly spaced time epochs
at intervals ofr; see Figure 2. These epochs are enumerated with the knd&r implementation of this
model involves estimating the clock states at each of thesets. One can calculate the state vector at time
epochty,1 based entirely on the state values at the efpelnd the white noise process by

X(tke1) = Drltier1)X(tk) + G S(tw) (2

where the transition matrix that propagates the state fgdmty, 1 is given by

0 1t -t (teen —t)?/2 0 1 1 7?2
1 ter—te (e —1)?/2 I A
Oy (tys1) = = :
1 ter — 1 T
1 1

The matrixG is called the process noise pre—multiplier. It serves tolaatt the random walk phase noise
and the white phase noise to the additional phase state.thiitéhe phase state whose derivative is set to
frequency does not have an additional white noise procels.pfocess noise pre—multiplier and random

504



439 Annual Precise Time and Time Interval (PTTI) Systems andidgtions Meeting

noise inputs to the system, in evolving discretely frigro ty.1, are

i1
and  S(t):= G_lf Dy(&)u(€) dé. (3)

tk

O O O
OO rFr Pk
OoOr OO

From this point forward, we define the notatiggp : = x(tx) ands : = X(tk) for simplicity. Both of these
conventions will appear later, depending on context.

| T | «<—7 |
® ® ® CC ° ® ® >
D)
to t1 ty ti1 ty tie1 t

Figure 2. Discrete enumerated epochs on a continuous tiree ax

From Equation (3) and the assumption of the noise expentatithe continuous model, one can derive

tir1
E[Gx] = f De(§E[u(®)] d& = 0g1.

tk

SinceG is a constant invertible matrix, the mean of each discreisenstatistic must be 0. Applying the
definition of ¢ in Equation (3), the covariance matrix associated with fherdte white noise statistics is

thr 1
GQG' = J f D, (£) Sy (17) So(¢ — 1) dn de. (4)
tx tk

From this, and recalling that= tx,1 — tx, the Qx matrix may be explicitly calculated as

[S1 fh 0 0 0 |

Qk =

3 5
0 SzT + 33% + 84%

0

| 0

T2 T4
837 + 84?

3

T2 T4 T3
837 + 84? 84?

T3 T2
SgT + 84? 847

2

.
S

84 TT S4T ]

(5)

where f}, is a high frequency cut$bto limit the bandwidth of the white phase variance. Tlfie-diagonal
entries ofQx can be specified either from manufacturer’s specificatiofran Hadamard analysis of the
clock signal[6]. It is worth noting that the epoch numblefs absent from the structure of the matridag

G andQ. This is a result of the stationary nature of the white noise@sses. Often, the epoch number

subscript may be dropped when it is clearly superfluous. [Jefor further details on the development of
the discrete time model.
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GPSCLOCK MODELS

The clocks aboard the GPS constellation satellites expéribdic perturbations in the measurements ob-
served. While the precise source of theffeds is not known, their mathematical nature has been fahti
as sinusoidal perturbations with periods of 2.003 and 4dy@tgday[1].

Since there are two periodics thdfext a GPS clock, we expand the base model of the last sectiaddiyg
four additional states. It is necessary to add two statepgmodic since a sinusoid is uniquely determined
by a phase and an amplitude. Three models will be presentétharonly diference between them will
be the method by which these periodic states are coupleda@anglated to the clock dynamic states. The
coupling of the periodic variables is described in the diagof Figure 3. Note that in Model |, the harmon-
ics are added directly to the output phase of the clock tactljresimulate the intrusion of the periodic in
the clock signal. Model Il injects the oscillating harmotichboth phase states in order to reconcile the two
phase states as equivalent up to one white noise processl Miocbuples all the clock dynamic states to
the periodics.

White Noise White Noise White Noise White Noise
Ug Us up Uy

' ! ' l

b— Jdt X:—EB Jdt ;3—@ Jdt o— *—

X2 X1
T Drift Frequency Phase T
Model Ill Model |
O O
X5 + Us X7 + Uz Two states per harmonic
Xs + Up C) > < C) Xg + Ug each with White Noise

Figure 3. Clock model with fixed period harmonics added in oitaree ways.

For GPS clocks, the presence of harmonics requires an dégparfghe state and noise vectors. Since there
must be two states per periodic, these vector expand to lioeving.

X

[ X1, X2, X3, X4, X5, Xg, X7, Xg |,
u = [ug, Uy, Uz, Ug, Us, Ug, Uz, Ug].

With these expanded vectors comes the expanded covariaitg.ms with the base model, this covariance
matrix is equal to a delta function multiplied by the matrix

S = Diag[S1, S2, S3, Sa, Sh, Sh, Sh, Sh].
For simplicity, it is assumed that the harmonic states hlagesame level of noise. In other words,

E[] = E[] = E[5]| = E[ ] = S (6)
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Although the periods of the sinusoids are fixed throughoist flaper, the model is designed to accept two
periodic influences of any period. Therefore, define theatdesw, and w» to be the frequencies of the
sinusoids mentioned in cyclesy. For this paper, it will be the case that = 2.003 andw, = 4.006.
Furthermore, define the dimensionless versions of thegadreies

V1 = 2nw1 and Vo = 2nw.

M obpEL |

The first model entails the simplest computational intrdiducof the fixed periodic influences. We simply
add two fixed period harmonic oscillations to the phase stand weight them with the four harmonic
state variables. Hence, the deterministic component gblilase state takes the form

X1 = Xo +TX3 + T—zzx4 + X5 COSf1tk) + Xg SiN(v1tk) + X7 COSfotk) + Xg Sin(vaty).

Note that the harmonic variables are used as weights on the figriod sinusoidal functions. This allows
the filter to adjust the weights such that the amplitude aradelof the two harmonics are attained to corre-
spond to those realized in the GPS clock measurements.

Since the harmonicfiects are assumed to influence the clock and be completeffected by the clock
states, we presume a total decorrelation of the harmonit€lack states. The continuous clock model for
this case will therefore involve a periodic forcing as a adltnction at each epoch. Thdidirential model
will be the same as in Equation (1), namely

C Ojdx [F 04
dt

o 1. o, |4] x(t) + u(t) )

where the coicient matrices are simply expansions of those presentéakibdase model. Upon integration
(or use of an inverse Laplace Transform), one obtains a i@mransition matrix. The sinusoidal entries
in the top row are added to the transition matrix to incorftae harmonics into the; phase state. The

discrete model therefore has the form

Xks1 = (D) + My )Xk + G

where

(o 04 [G 04
q)|—[04 |4] and G|—[04 |4].
Also,
M, = [01,4 cosfity) sin(vity) cosfoty) Sin(Vth)]
“T 10 On1 071 071 071 |

In this simplified model, we assume no correlation betweenh@irmonic states and the clock’s phase.
The intent of adding the harmonics in this fashion is to aotdar the superimposed undulations in the
phase via fairly well-determined periodic influence. Thasmn for adding the periodics as states with
stochastic processes is to give the filter stochastic flixyibd update the states should there be a change in
the periodics. A purely deterministic periodic would be ce@nmodating to any measurement changes or
other such numerical inconsistencies. We therefore takedhariances of the harmonic states to be zero
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and obtain the error covariance matrix in the same manner Bquation (4):

tir
E[G ssS G| = k1c1>5c1>To| _g | O T
[|91<91<|]— A T
tk

MobEeL ||

For Model I, the periodic states are treated as oscillatiagables themselves, rather than as weights to
fixed trigonometric functions. The two most cruciaffdrences between this and Model | are: the peri-
odics are added into both phase states; and, the covaribatesen the clock and periodic states are not
neglected. By allowing this stochastic connection, therecovariance matrix becomes inherently more
complicated and therefore increases the computationaplexity of the Kalman update routine.

The continuous model is again of the form in Equation (1). ¢beficient matrix, however, diers substan-
tially. For Model Il, we have

1 -1 0 0
0010 1 0 1 (¢
0 0 01
[84 ?ﬂ%: 0 000 0 X(t) + u(t). (8)
—V1 0
0 w
-vp 0]

The codficient matrix to the vector stateclearly shows the periodic states as oscillating variallete the
submatrices in the lower quadrant. These periodics aredaddbe phase state in the second row and then,
by extension, are incorporated in the second phase staee Bie harmonics are integrated into the system,
rather than added at each epoch, there is no epoch depavigenatrix for this model. The pre—process
noise multiplier is unchanged for this model since the ipooation of noise to the second phase state is the
same. Henced;) = G,. The discrete propagation model will be

Xir1 = OyXp + G &

where
0 1 T T2 / 2 sin(v17) 1-cosf17) sin(v,7) 1-cosf 1) 1
1 N sinpr)  1-cosar) Sinferr)  1-coafor)
1 V1 V1 V2 V2
T
1

cosf1t) sin(vair)

—sin(v1t) coslT)
Ccosfot)  Ssin(vor)
—sin(2t) CcOS2T) |

As in the previous model, the covariance matrix is obtaingdhiltiple integration ofd andS with a delta
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function. Equation (4) can be used to obtah‘a[ G S St GH = G, (Q_+Q])G| where

Sy 0 0 o 0 0 0 o
0  SpL+S3% +S4Z +SpQ 0 o 0 0 0 O
0 SsL +S4L Ss5+S+% 0 0 0 0 O
0 Sy S4%- S 0 0 0 0
Qu=| o ~Sp 2 0 0 St 0 0 ©
0 Sy gt 0 0 0 St 0 0
1
0 —sh%‘ng) 0 0 0 0 St O
0 S 0 0 0 0 0 St
| : _
and : ,
V1T — Sin(v17) voT — Sin(v27)
Q= .
n v
MobkL |11

In the third and final model, the harmonic states are agaateideas oscillating variables. This model is
distinct from Model Il since the harmonic variables are dedpdirectly to the drift state rather than only
the phase state. From the diagram in Figure 3, one can sethé¢hlagrmonic states (along with their white
noise components) will be integrated three times. The itngkithese states on the phase will therefore be
significantly more complex. This is expected given that sgsive integrations from the drift state yield

s ¢
Ua(9) + f (u3(5)+f (U4(n)+X5(n)+X7(n))dn)d§]dS

t
xa(t) = wa(t) + f

The continuous dierential model for the entire system is again of the form ind&gpn (1). As in Models |
and Il, we haveC); = C; andGy; = G,. For Model Ill, we have the system offtirential equations

1 -1 0 O
0O 0 10
0O 0 01
Cm%= 0000 01 v? ! Ox(t)+G|”u(t). 9)
—V1 0
0
-v2 0]

Notice that the periodic variables are added to the dritiest&ince the drift integrates to the frequency
which in turn integrates to phase, the periodieet is propagated through the entirety of the clock states.
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The discrete time model is again of the form
Xk+1 = O X + G &

where the transition matrix is now

0 1 1 2/2 nrsintin) ViT?-242008¢17)  yir-sinfor) V5T —2+2C0S¢21) ]
Vf 21/? vg 2v§
1 - T2/2 y17=Sin(y17) V572—2+2 cosf17) y17=Sin(vo1) V572—2+2 COSf21)
v V3 v 23
1 1 2 2
1 1-cosf7) v1T—Sin(v17) 1-cosf,7) vor—Sin(v21)
T \4 V2 \Z V2
1 1 2 2
1 sin(v17) 1-cosf11) sin(v,7) 1-cosf,1)
oy = V1 Vi v2 V2
cosf17) sin(v17)
—sin(v17) cosf17)
COSfo1) sin(vor)
—sin(v2r) COS{21)

Note that®y, has far lower sparsity tha@,. The covariance matrix will not be shown here since some
entries of that matrix contain hundreds of terms. One mayptdeQy using Equation (4), but it is only
necessary for the reader to be aware @ais less sparse and contains substantially more complitaitets.

CLOCK ENSEMBLE AND KALMAN FILTER PROCESS

An important concern in this report is the number of calcata that must be carried out in order to attain
the state vectoxy from the state vector at the previous time step;. Given that the actual state vector is
unknown, a process that involves updating estimates ofitivi ¢s needed. We assume some initial estimate
for the state vectokp. Then, using the transition matriix, we update the state vector to estimates at the next
time step, namelX;. This propagation follows the base discrete model of Equa2) without the noise
term. Since the noise is random, it can be neither prediaeapplied to the deterministic propagation. As
shown in Figure 4, the filter produces a series of clock ststiemates, almost surely not equal to the actual
clock states. Even the initial conditiof is a guess that is not equale.

Actual
State
(unknown)
Xo X1 X2 t
® ® ® >
Estimated = 1 = = 1
State X0 L@ | X1 EI_) X2 L@ |

Figure 4. Actual versus estimated clock states.
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In order to compare the state of the physical clock to thee statimates, there must be a measurement of
the clock’s phase. Since a clock may only be observed withetso another clock, there will be a need
for more than one single clock before the notion of measunésnand updates can be considered. Before
continuing on this front, a model for an ensemble of clocksrésented.

EnseMBLE oF CLOCKS

Consider a set oN clocks each of which has four clock states as well as fourgeddent noise inputs.
Thus, for clocki, we have the four stated’, X!, X} and X! as well as the noise inputg’, ulll, ulll and

uﬂl. A GPS clock will also have the additional four periodic egatnd their associated noise processes. The
two phase states of all the clocks are assembled togethewéal by the frequency states and then the drift
states into a single large state vector. The same orgamizaiplies to the noise input vector and so one has,

_ [ 2] [N] 1] 2] [N] [1] 2] N7
X_[XJ_’X]_ ,...’Xl s X2’X2’...’X2 sttt L, X8’ ’...,)(8 ]
and
_ [ 2 [IN] 2] [N] 1 2 N 1T
u = [ul ’ul’...’ul s u2 ’u2’...’u2 LRI u8 ’u8’...’u8 ]

For simplicity, assume all clocks have 8 states where masatscesium clocks have the periodic states
“turned df” by setting them to zero. The system transition matrix iza 8N square matrix and is obtained
by the Kronecker product of the base transition madrjxwith the sizeN identity. The discrete model for
the ensemble therefore becomes

Xke1 = (Do ®IN + L(@)M® In)Xk + (Go ® IN)sk (10)

wherea € {I, 1,111} is the model number anti(«) is the indicator function that returns 1df = |1 and O
otherwise. One can expand the matrices defined here to rinaeatructure of the transition matrix and
process noise pre—multiplier for an ensemble of clocks.

Each clock will have its own independent collection of zen@an input noises,lg],---ug], where each
of these noises corresponds to the initial definitionsiof - - , ug, respectively. We may then construct a
continuous version of the associated covariance matrix

E[u®u'(t)] = Diag[ st s, s, ... ... sP g ... SN 6ot -1)
where we define the matrix of spectral densities t&Shbas usual. The discrete version of the covariance
matrix for the ensemble case is obtained as in Equationri4)aiticular, one can use

8N

D[ @e(® @ InJin [ Sl [@a(@) @ 1] | &,
n=1

the1
[(GeIN)Q(Ge®IN)]; = f
t

to obtainQ. Note that since&, (¢) ® |y is quite sparse, many elements@fwill be zero.
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K ALMAN FILTER ESTIMATION PROCESS

With the model for a clock ensemble complete, it remains taitithe manner by which measurements are
treated. For an ensembleMfclocks, we fix clock # as the reference. Hence, all clock phase measurements
are observed with respect to clockl#lt is these measurements which contribute to the Kalmaarkihd
update the propagated estimates of the state vector. Intorbaild an appropriate filter, we must relate the
measurements to the state vector. Define the vector

2(t) = [2Y), 27, 29t . AN () |

to be the set of measurements at titnevherezl(t) = X (t) - XM (t) is the observed phase of clotk
with respect to the reference clobk We may then relatg, andzx by the equation

Z(t) - HXx(tk) = On-1)1 (11)

where the observation matrix is

(1 0 0 --- 0 -1 O]
010 - 0 -1 Oy
H = o010 -1 01,7N
0 0 0 --- 1 -1 Oy

Iin-1),8N

Since the state estimates of the clocks are not equal tauhstate values, we will encounter the observation
equation in the form
z(tk) - HX(t) = v(t) (12)

wherev is the vector of clock residuals. See Figure 5 for a diagrammefKalman propagation and mea-
surement update routine at epdgh

With the discrete plant of Equation (10) and observationdtign (12) specified, a Kalman filter may now
be implemented recursively. These standard equationsnaheded here for completenefg. We are
interested in propagating estimates of the combined stat&serror covariance from time epoth; to ty.
Assume that state estimates and error covariance are diven eespectively ax(t_1) andP(tx_1). An a
priori estimate of the state vector can be obtained by

X(t) = PR(-1) (13)

wheret, is used to indicate the priori nature of this estimaté((t, ) is prior in the sense that it predictéty)
without any input of the measuremezity). The error in thea priori state vector is defined as

et ) = x(t) —X(t)

which has the associatea priori error covariance matri¥(t,) = E[e(t;)eT(tlz)]. The a priori error
covariance matrix is predicted froR(tx_1) by

P(t) = ©®P(tx-1)@" + GQ(t-1)G". (14)

Thea posterioriestimates are attained by including measurement data. €asurements #t are arranged
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into a vector along with an accompanying observation maifiEquation (12). The Kalman gain, state
vector and covariance matrix updates are found in the usaal w

K(t) = PEGOHT (HPEGOHT +R) ™ (15)
X(tk) = Xty) + K (2(t) - HX(t)) (16)
Pt = P(t) - KHP(t). (17)

Thea posteriorerror covariance can be calculated as shown in Equatiorb{itd} initially defined as

P(t) = E | e(t) €' (t) |.

where the vector of errors is
e(tk) = X(tk) —X(tx).

The Kalman filter that is employed in this study contains oitleck statistic evaluations such as down—
weighting, spectral density adaptation, ensemble merigeontrol (based on steady state of clocks),
phase break and frequency break detection. Thieete are mostly switchedtdor the tests presented in
this paper. The details surrounding these other elemeatianinated here since they are not changed from
one model to the next and therefore have little bearing oGR8 model comparison.

Clock #1 Clock #2 Clock #3 Clock #4 Clock #5 Clock #6 Clock #7 Clock #8

O O 0 O 0 0 0 O

21 (t) 22 (t) 23(t) 24(t) 2X(ty) Z51(t) Z7)(t) REFERENCE CLOCK

\ / Clocks 1 -7 are
measured with
Clock measurements at epoigh respect to clock &.

> Rlter) —ENE—> 1) —[ED T 70 Ty —

Propagation Kalman Update Propagation

Figure 5. Measurements from an eight clock ensemble beied tsupdate the a priori
estimates of the stabét, ), at epoclty to the a posteriori estimategty).
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FILTER PERFORMANCE AND RESULTS

In this section, we present results of the filter when equdppith each of the three models discussed ear-
lier. The statistics arising from the estimated clock prersecompared with the statistics of the true clock
phase to assess the validity of each model and determinextéet ¢o which each can apply to the filter
and generate an accurate timescale. In addition, an analfyie computation time is presented. Loss of
algorithm speed is one concern when using a more complexyrgetse model. Ultimately, a comparison
of the accuracy and speed are made to determine the tri&idie-selecting a particular modeling approach
for the GPS clocks and their periodics.

ComPUTATIONAL COMPLEXITY

The state and covariance propagation, which take placeuatitos (13) and (14), are of primary interest in
this report. It is these two computations that involve tlaasition and noise covariance matrices and hence
where the complexity of the model is most relevant. The updtgp of Equations (15) (16) and (17) are
not as relevant since they are not directly dependent oniffeseht models presented earlier. These update
equations show how the observation matiiXof constant sparsity) dominates the matrix products.

We can determine the complexity based roughly on the numbaocks with harmonicdN, and the num-
ber of clocks without harmonicl,,. The number of clocks and presence of additional stateharméin
factors dfecting the size and complexity df andQ. Clocks without harmonics will have entries of zero in
the right hand half of the transition matrix. This is impamtt#o note because a matrix product can be done
faster when the trivial computations are neglected.

Ouir filter algorithm employs a UD—factorization of the eromvariance matri¥ in order to help speed the
algorithm and maintain a symmetric structureéPnThe routine used to propagate and update the estimates
is due to Catherine Thornton and can be foun{Bin This routine actually updates thkandD factors so
that

Ut)D(tUT () = U(te1)D(t-1)UT (1)@ + GQ(tc-1)G .

The formulas in Table 1 show (roughly) the number of numémpcaducts that must be made in order to
propagate the state and covariance in the Kalman Filtee Mait the number needed is more than twice as
great for Model Il versus Model I.

Table 1. Comparison of calculations required at the proj@gyatep.

Model Number of Calculations Nh =24 andNy = 17
Number DX oU Total  Ratio versus Model |
| 15Nh + 7Ny | 368N2 + 316N, Ny + 60NZ | 296,651 1.00
I 19Nk + 7Ny | 600N? + 524N, Ny + 108NZ | 492,677 1.66
Il 27Np + 7Ny, | 952N2 + 796N, N, + 164N3 | 766,475 2.58

NB: Formulas are approximate to simplify exposition.
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TIMESCALE STATISTICS AND FILTER TESTS

The following statistics are based on estimates of the sl@rid associated timescales from our filter. We
present both the computation time and the variance statisithe timescales for each of the three models.
Input parameters for the spectral densities and GPS claiddies are shown below in Table 2.

These input parameters are needed to generate a data det #it tlocks. Each clock is simulated for a
period of 100 days with discrete time epochs spacad-aB00 seconds (5 minutes). The simulations pro-
duce true states for all the clockéty) and generate measuremenfty) according to Equation (11). These

measurements are passed to the filter three times (each plassdiferent GPS clock model) for testing.

Table 2. Model parameters assumed for various clock types.

Clock Class Cesium GPS 1l USNO Maser AMC Maser
Clock Numbers 1-15 16 -39 40 41*
Spectral Densities
S: (sed) 1.00x 10%® 1.00x102%® 1.00x102%® 1.00x10°2°
S, (seé/sec) 723x 1028 490x10% 1.00x102* 225x1024
Sz (seé/sed) 1.00x 1038 100x103 1.00x103% 1.00x10°3®
Ss (seé/sef) 1.00x 10°° 1.00x 104 1.00x10°° 1.00x 10>
Periodic Frequencies
w1 (cyclegday) _— 2.003 _ _
w2 (cyclegday) _ 4.006 _ _
Periodic Amplitude and Phase
A; (nsec) _ 0.700 _— _—
A, (nsec) e 0.700  —  —
¢1 (radians)  — 0  —  —
¢ (radians) _— 0 _ _

*AMC Maser (clock #41) is the reference clock.

The filter processes the measurements using the same sgdeosy values as defined in Table 2. Estimates
of the clock stateg(ty) are calculated at each time epoch. As the filter processdsatich of measurements,
it computes an ensemble clock (weighted average of the 4ksloeing processed). This ensemble clock is

the timescale and its estimates along wiftx) are used to calculate Hadamard deviations. The Hadamard
deviation of clock # is defined by

ey = Ni—ll T (t1) - 287 (1) + 2 (t4_)
’ 6 (N - 2)

k=1

whereNr is the total number of epochs for the period of 100 days wi#is the nominal sampling interval
[9]. Here,a € {l, I, 1l } is the model number from which the estimates have been @utain

In order to simplify the presentation of results and alsa$oon the filter's performance with respect to the
different clock types, Hadamard deviations are averaged ovhraiass of clock. For the ground cesium
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clocks, GPS clocks and masers, we compute the averagdictatis

n=16 n40

15
O DA GRS Lo . e - L35 el

respectively. The plots of the deviations are smoothed bgdhlaverages since some of the random noise
generation is averaged. In Figure 6, the average Hadamuiatida for the diferent clock types is plotted

for the clock estimates of Model I. Note that the deviationhaf timescale is also plotted.

g, 12 —— Cesium |

210 —- —GPs I

= ] Maser

g c— \\~v — Timescale

e} -14 \\ -\
\

E

10° 10° 10° 10° 10°
Interval (seconds)

Figure 6. Hadamard deviation plot of clock estimates for kldd

Recall that the periodic states of Model | were roughly canstveights of the deterministic functions
cos(Zrwt) and sin(Zwt). This differs substantially from the Model Il version where the pddcgtates
were sinusoidal states themselves and then superimpos#te grhase states of the clock. Despite this
difference, the filter extracts similar deviation statisticewhsing either of these models. Figure 7 shows
the diference between the Hadamard deviation plots of Models | aibte these dferences are less in
magnitude in comparison to the plotted timescale of Modehk cause of the sinusoidalfidirence is likely
the decorrelation (Model 1) versus correlation (Model }tee periodic and clock states.

a — Cesium
‘4% 10_10 _GPS 11
£ Maser
A —— Timescale
E —\\ /7
—-20
= 10
10° 10° 10" 10° 10
Interval (seconds)

Figure 7. Diferences between the Hadmard deviations of the Model | andeMibd
estimates of each clock type. These are plotted along sildHddamard deviation of
Timescale | showing that all Modelf@ierences are below the timescale performance.
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In Figure 8, the deviations of all three timescales are @ibtiThe timescales resulting from thefdrent
models are remarkably similar. It is important to note, hesvethat the Model Il timescale is based
on predicted clock values. The actual clock estimates fod@lidil yield a poorer performing timescale.
Extensive experimentation with the third model has suggksiat even small amounts of noise at the drift
level can amplify upon integration and have grediéets on the clock phase estimates. Such is likely the
case in Model Il since the periodic states are integratewh fthe level of drift. There are hypothesis for this
behavior, but these inaccuracies are not an issue or a kpratdem here. The €lierence in the deviation

of the timescale from Model | to the true output of Model lllsigticiently low to suggest that Models | and

Il are able to produce reasonably accurate timescales.

108 e e e
SRS , B —— Model | ]
o o Sy ]
-% \ Model Il |]
= ~ —— Model 11l |
A .14 \\
=10
:
E
m10—15 N N N N N N S N N N
10° 10° 10" 10° 10°
Interval (seconds)

Figure 8. Comparison of timescales for Models 1, Il (estieshxtand Il (predicted).

In order to compare the models, we measure the absolfitzatice between the averaged Hadamard devi-
ations of the estimates and true clock values. An averagleesktdiferences over then gives a measure
of the model's performance for each clock class. Define tlerage diference between the Hadamard
deviation of the model’s estimate and true states to be

1 —
AS = m Z | O'S(T) - O'C(T) |
TeT

whereT is the set of epochs over which the filter was run. Table 3 domtaumerical results of this mea-
sure. Note that the averageffdrence of the deviations are relatively best for Model Il leviodel 111
performs poorest. This is consistent with the analysis eftilmescales earlier. In Figure 8, one can note
that the Model | timescale contains greater influence froenpiiriodic states. The Model Il timescale has
less variation by comparison. This may advocate for cdirglahe periodic states to the clock phase, but
not fully correlating and coupling the entire clock.

In Table 3, results of the filter speed are also presentedvdiigble p, is the computation time in seconds
per epoch when model is employed. Theféects of the propagation step are evident by the ratio of time
needed with respect to Model I. The ratios compare well viighraatios of Table 1. They are expectedly less
pronounced in Table 3 since an entire epoch of computatimhsdes calculations outside of the propagation
step where the models’fiitrences are less relevant to computation time.
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Table 3. Model comparisons. Left side: Averagfeatience between true and estimated
clock statistics over the full range of Right side: Comparison of algorithm speed.

Model Deviation Comparisons Speed Comparisons
@ AS AS AY Po Pa/ P

| 286x 1016 470x1016 133x1015 | 0.0722sec 1.0000
Il 3.34%x 101 305x101 112x101°| 0.0790sec 1.0943

1 1.15x 1015 829%x 101 387x101° | 0.1584sec 2.1932

CONCLUSIONS

Simplified GPS clock models that partially decorrelate themonic states from the clock states do not
severely compromise the accuracy of the filter or perforrmafdhe timescale. These results have demon-
strated, however, that simpler models can decrease theutatigm complexity and hence processing time
of the filter algorithm.

The model which fully couples the harmonics states to thekcitates is highly complex with several noise
components that are added to the drift state. Since theigliilfitegrated twice beforeffecting the clock
phase, the periodic states and their corresponding noieésupdly disturb the model's phase output. Such
complications are unnecessary for accuracy and actualtiehiaccurate filtering of the clock phase.

Although there are considerable speed improvements fatgberrelated model, the second model seems to
offer a reasonably fast alternative. The primaifatence with Model Il is that the phase states are stochas-
tically correlated to the periodic states. There were eatite accuracy improvements for this filter without
too much additional computational complexity. It may beddanal to consider such a model or a variant as
a reasonable tradeffdetween complexity and accuracy.
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